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We study the dynamics of the massive Schwinger model on a lattice using exact diagonalization. When
periodic boundary conditions are imposed, analytic arguments indicate that a nonzero electric flux in the
initial state can “unwind” and decrease to a minimum value equal to minus its initial value, due to the
effects of a pair of charges that repeatedly traverse the spatial circle. Our numerical results support
the existence of this flux unwinding phenomenon, both for initial states containing a charged pair inserted
by hand, and when the charges are produced by Schwinger pair production. We also study boundary
conditions where charges are confined to an interval and flux unwinding cannot occur, and the massless
limit, where our results agree with the predictions of the bosonized description of the Schwinger model.
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I. INTRODUCTION

The massive Schwinger model [1]—quantum electro-
dynamics in one space and one time dimension—is a
fascinating quantum field theory that has been studied
intensively since the 1950s. It has a wide set of applica-
tions: as a simple example of a quantum gauge theory, as an
Abelian theory that nevertheless exhibits a linearly growing
potential between charges and hence a kind of confinement,
as a theory that exhibits a prototype strong/weak duality via
bosonization, and even to models of cosmic inflation in
string theory [2–4].
Most work on the Schwinger model has focused on its

static properties, such as its spectrum of excitations, the
value of the chiral condensate, etc. There has been
relatively little work, either analytical or numerical, on
time-dependent phenomena in the Schwinger model. Two
recent works include Hebenstreit et al., who considered the
dynamics of string breaking in the massive Schwinger
model using a numerical technique where the gauge field is
treated classically/statistically [5], and Buyens et al. who
studied real-time evolution of the wave function using the

matrix product states formalism in the thermodynamic
limit [6].
Despite the absence of electromagnetic waves in one

spatial dimension, the electric field in the Schwinger model
is generally time-dependent because charged particles
move and affect its value. These particles can be sponta-
neously produced by Schwinger pair production in the
quantum theory [7], or simply be present in the initial state.
In Ref. [8], a new time-dependent phenomenon was
discovered in the Schwinger model (and a broad class of
other theories) with spatially periodic boundary conditions.
A solution to the classical theory with no charges is a
homogeneous, time-independent electric field that winds
around the spatial circle. If a pair of equal and opposite
charges is present, the field accelerates the charges in
opposite directions until they collide at some point on the
opposite side of the circle (see Fig. 1). If the charges
transmit through each other, they will continue in the same
direction, unwinding two units of charge on each circuit
(charge and field strength have the same units in one
dimension). As a result, the initial value of the field will
steadily decrease. In the absence of any other dynamics, the
momentum of the charges causes the electric field to
overshoot zero, decreasing to a value with equal magnitude
and opposite sign as the initial field. This is sharply in
contrast with the case of the infinite line or boundary
conditions on an interval that forbid charges from crossing,
where a single charged pair can at most reduce the field by
two units.
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This mechanism is known as a flux discharge cascade or
flux unwinding [8], and is related to the phenomenon of
“axion monodromy” [9,10]. Note that the unwinding
mechanism depends crucially on the ability of an electron
and positron to transmit directly through each other without
reflecting, annihilating, or forming a bound state. If any of
these other processes occur with non-negligible probability,
unwinding may still happen some of the time or in one
branch of the wavefunction, but it will not necessarily be
the dominant process.
Generalizations of this unwinding process are potentially

of interest to the theory of cosmic inflation [4,11]. In
theories such as string theory and supergravity with higher-
dimensional charged objects (branes) and the higher-form
analogs of electromagnetic fields they couple to, the
gravitational effect of the energy in the field can drive
exponential or quasiexponential expansion of space.
During the unwinding process the energy gradually
decreases, so that the rate of this slow-roll inflationary
expansion reduces gradually and then comes to an end.
Furthermore the initial state prior to (the analog of)
Schwinger pair production rapidly inflates and produces
an exponentially large volume, and therefore arguably
constitutes a natural initial condition for the universe.
In this paper, we examine the lattice version of the

Schwinger model and study several time-dependent phe-
nomena in a variety of parameter regimes and for several
different initial states. Most prior numerical work on the
lattice Schwinger model was restricted to what is referred to

in the literature as “open boundary conditions” (OBC),
where the electric field is fixed at the edges and charges
reflect off the boundaries [12–14]. With periodic boundary
conditions (PBC) the theory has an extra quantum
mechanical degree of freedom (d.o.f.), which can be
thought of as the electric field at one lattice site [15].
For a fixed number of lattice sites we exactly diagonalize
the full Hamiltonian, and establish that flux unwinding
indeed occurs in the nonperturbative lattice theory with
PBC when a massive charged pair is inserted in the initial
state. We observe that the electrons and positrons can
transmit through each other in this regime with a fairly high
probability. We also study the dynamics of the model with
OBC. Flux unwinding cannot occur with OBC, but our
simulations clearly show that positive and negative charges
can transmit through each other with high probability.
Finally, we study the time-evolution of the zero-electric
field ground state and show that Schwinger pair production
occurs and leads to flux unwinding.
This paper is structured as follows. In Sec. II we review

the discrete version of the Schwinger model. In Sec. III we
describe our numerical techniques, the initial states we will
consider, and the observables we will compute. In Sec. IV
we present our results, and in Sec. V we conclude.

II. THE SCHWINGER MODEL ON A LATTICE

The Hamiltonian for the continuum Schwinger model is
that of quantum electrodynamics (QED) in one spatial
dimension [1,16,17]

H ¼
Z

dy
�
−iψ̄γ1

�
d
dy

þ igA1

�
ψ þmψ̄ψ þ E2

2

�
: ð1Þ

We work in natural units with c ¼ ℏ ¼ 1. Here E is the
electric field operator, the vector potential A1 is related to
the electric field by E ¼ − dA1

dt because we choose the gauge
A0 ¼ 0, ψ is the two component field operator for the
electrons and positrons, ψ̄ ¼ ψ†γ0, m is the mass of the
electron, g is the charge. The γμ matrices of dimension
2 × 2 are defined by fγμ; γνg ¼ 2ημν where ημν is the
Minkowski metric with diagonal elements of ð−1; 1Þ and
zero otherwise. The indices μ, ν run from 0 to 1. Note that
the charge g has dimensions of mass, as does the electric
field E.
In one spatial dimension, Gauss’ law takes the form

EðyÞ ¼ F þ g
Z

y

0

dy0 j0ðy0Þ ð2Þ

where j0 ¼ ψ†ψ and F is a constant background electric
field at the position y ¼ 0. The nature of Gauss’ law in one
dimension is that the electric field is constant when the
charge density is zero, and changes by g across the position
of a charge g.

FIG. 1. Schematic representation of the dynamics of a pair
particle-antiparticle under an external electric field (quench) α.
The electric field accelerates the fermions in opposite directions,
lowering the average electric field on each circuit.
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This gives rise to a confining interaction between the
electrons and positrons, as the constant field between them
corresponds to a linearly growing potential. Due to the lack
of electromagnetic waves in one dimension, there are no
local d.o.f. associated to the electric field, except possibly
for the single global d.o.f. F ¼ Eð0Þ (depending on the
boundary conditions).
The Hamiltonian (1) involves both the d.o.f. for the

particles (electrons and positrons) and the electric field. In
order to numerically compute the Hamiltonian, the standard
procedure is to perform a discretization by considering an
staggered lattice, where electrons and positrons occupy
odd and even sites, respectively [18,19]. Starting from the
discrete fermionic Hamiltonian, we apply a Jordan-Wigner
transformation in order to map the fermion operators to
spins [20]. The Hamiltonian in this formulation is

H ¼ x
XN
n¼1

½σþn eiθnσ−nþ1 þ σ−n e−iθnσ
þ
nþ1�

þ
XN
n¼1

�
ðLðnÞ þ αÞ2 þ μ

2
ð1þ ð−1ÞnσznÞ

�
; ð3Þ

where σx;y;z are Pauli matrices and σ� ¼ ðσx � iσyÞ=2. The
parameters are defined by

μ≡ 2m
g2a

; x≡ 1

g2a2
; α≡ F

g
;

where a is the distance between lattice sites. The dimensions
have been scaled out of the HamiltonianH in (3); it is related

to the continuum HamiltonianH byH ¼ lima→0
ag2

2
H. Due

to the staggered lattice, spin up at an even site represents a
positron and spin down represents the vacuum; spin down at
an odd site represents an electron and spin up represents the
vacuum. The number of lattice sites N is always assumed to
be even. In the spin language, states of zero charge corre-
spond to states which have a total magnetization

P
n σ

z
n ¼ 0.

In (3) we introduced the lattice electric field operator
LðnÞ, with eigenstates

LðnÞjli ¼ ljli ð4Þ

where l is an integer. It is conjugate to the vector potential

according to A1ðxÞ ↔ − θðnÞ
ag and obeys the canonical

commutation relation ½θðnÞ; LðmÞ� ¼ iδnm. The exponen-
tial of the vector potential acts as a shift operator for the
eigenstates of L:

e�iθjli ¼ jl� 1i: ð5Þ

Gauss’ law on the lattice is

LðnÞ − Lðn − 1Þ ¼ 1

2
ðσzn þ ð−1ÞnÞ: ð6Þ

This means that in any eigenstate of spin and given the
value of the electric field at the boundary Lð0Þ þ α, the
electric field at every other point is determined everywhere,
and changes only by �1 or 0 from one site to the next.
For the case of OBC we will set the electric field at the

boundary to

Eð0Þ=g ¼ Lð0Þ þ α ¼ α; ð7Þ

so that Lð0Þ ¼ 0. Since LðnÞ is then determined by (6), for
OBC the electric field is not a quantum mechanical d.o.f.
Instead, there is a continuous family of OBC Hamiltonians
indexed by the parameter α. Eliminating the electric field
d.o.f. we can write the lattice Hamiltonian for OBC as

HOBC ¼ x
XN−1

n¼1

½σþn σ−nþ1 þ σ−nσ
þ
nþ1� þ

N2

8
þ Nα

�
α −

1

2

�

þ 1

4

XN
n¼1

�
n − N þ ð−1Þn

�
2μþ 1

2

�
−
1

2

�
σzn

þ
XN−1

n¼1

ðN − nÞ
�
ασzn þ

1

2

X
l<n

σzlσ
z
n

�
: ð8Þ

In the continuum, the theory would be periodic under
integer shifts of α. This is not the case on a finite lattice for
OBC, but as we will see, it is the case for PBC.
The situation changes for PBC, where (6) leaves one

quantum electric field d.o.f. L≡ Lð0Þ unfixed, where 0 is
an arbitrarily chosen lattice site. Eliminating all the electric
field d.o.f. except L, we can write the Hamiltonian for
PBC as

HPBC ¼ x
XN−1

n¼1

½σþn σ−nþ1þ σ−nσ
þ
nþ1� þ xðσþNeiθσ−1 þ σ−Ne

−iθσþ1 Þ

þN2

8
þNðLþαÞ

�
Lþα−

1

2

�

þ 1

4

XN
n¼1

�
n−Nþð−1Þn

�
2μþ 1

2

�
−
1

2

�
σzn

þ
XN−1

n¼1

ðN −nÞ
�
ðLþαÞσznþ

1

2

X
l<n

σzlσ
z
n

�
; ð9Þ

where θ≡ θð0Þ. The spectrum of L is quantized in integer
units by (5) and is unbounded from above and below. The
theory is again specified by a real number α, but shifts of L
by an integer can be absorbed by an opposite shift in α, so
one may restrict to the fundamental domain 0 ≤ α < 1 or
regard the theory as a periodic function of α (this is the
well-known periodicity of the Schwinger model [2]). It is
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transitions between these states of L that allow for the
unwinding mechanism as discussed in [8], which cannot
occur for OBC where L is not a d.o.f.

III. EXACT DIAGONALIZATION

To numerically solve the Schwinger model, we first
compute the Hamiltonian matrix for N lattice sites, using
the basis defined by the eigenstates of L and the σz as
described in the previous section. The physical subspace
that we will study has total charge of zero, corresponding to
total spin zero in the spin language

P
n σ

z
n ¼ 0. In the case

of PBC the zero charge condition is necessary for con-
sistency with the boundary conditions (the total charge on a
compact space must always vanish). For OBC we will also
impose that the total charge vanishes, which implies that the
electric field is equal on the two boundaries. One could
consider nonzero total charge for OBC, which would
correspond to an electric field gradient with different field
values on the two boundaries, but we will not do so in this
paper. Restricting to zero charge results in a reduction in the
Hilbert space dimension from 2N to ð N

N=2Þ ∼ 2N=
ffiffiffiffi
N

p
.

As explained in the previous section, there is an extra
bosonic d.o.f. L with PBC, so that the Hilbert space with
PBC is infinite dimensional even with N finite. However,
(10) shows that states with large values of L have large
energy. Therefore for finite energy processes it is an
accurate approximation to truncate the Hilbert space so
that the magnitude of the electric field at any site n always
falls within the range −Lmax ≤ Ln ≤ Lmax. We verified that
our results are insensitive to increasing Lmax. The total
dimension of the Hilbert space is then

DPBC ¼ ð2Lmax þ 1ÞDOBC ¼ ð2Lmax þ 1Þ
�

N

N=2

�
: ð10Þ

Due to the fast scaling with N we are restricted to relatively
small numbers of lattice sites, but we will show that it is
possible to see the relevant dynamics in such systems.
To perform the time evolution, we first find the eigen-

states jϵni and eigenvalues ϵn of the Hamiltonian matrix
using a standard PYTHON library. The time evolution is
performed according to the relation

jψðtÞi ¼ e−iHtjψð0Þi
¼

X
n

e−iϵnthϵnjψð0Þijϵni; ð11Þ

where jψð0Þi is the initial state. We will consider two types
of initial states. The first corresponds to a quench, where
the ground state is found without the presence of the
background electric field

jψð0Þi ¼ jϵ0ðα ¼ 0Þi: ð12Þ

The initial state is then time evolved according to (11) with
a nonzero value for the background field in the
Hamiltonian. The second type of initial state contains a
pair introduced into the vacuum state, given by

jψð0Þi ∝ σþn

�Ym−1

j¼n

eiθj
�
σ−mjϵ0i: ð13Þ

This corresponds to an electron-positron pair located at
sites n and m excited from the vacuum. The electric field
shift operators e�iθn ensure that the resulting state satisfies
Gauss’ law. The ∝ symbol reflects the fact that the state on
the right-hand side of (13) must be normalized.
In the case of PBC, when a pair is added the field can be

changed in two natural ways to satisfy (6). Suppose a
positron is inserted at site np and an electron at site
ne > np. Either the electric field is changed by þg at all
sites n “in between” the pair, np ≤ n < ne as in (13), or
changed by −g at all sites n “outside” the pair, i.e., for
n < np and n ≥ ne. We choose the initial quantum state
that corresponds to an equal linear combination of these
two possibilities.
We calculate several quantities of interest. The expect-

ation value of the charge density at site n is

hρnðtÞi ¼
1

2
hψðtÞjðð−1Þnσzn þ 1ÞjψðtÞi: ð14Þ

The expectation values of the field Ln ¼ EðnÞ=g at site n,
and the expectation value and standard deviation of the
spatially averaged field are

hLnðtÞi ¼ hψðtÞjðLn þ αÞjψðtÞi;

hLðtÞi ¼ g−1hEðtÞi ¼ N−1
XN
n¼1

hLnðtÞi

σL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðLðtÞ − hLðtÞiÞ2i

q
: ð15Þ

We also compute the probability to measure a specific field
value l at site n for the field Ln ¼ EðnÞ=g:

pðn; lÞ ¼ jhψ jn; lij2; ð16Þ

where jn; li is the eigenstate of Ln with eigenvalue l.

IV. TIME EVOLUTION

A. Massless limit

The continuum Schwinger model is defined by the
dimensionless parameters α and m=g. The limit m=g→0
describes massless charged fermions. One might expect
that the theory becomes singular in some way because any
nonzero electric field can be discharged immediately by the
flow of massless charged particles. Indeed, QED in three
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spatial dimensions has a Landau pole at zero energy in this
limit. However the massless Schwinger model is not only
regular, but Gaussian. An initial nonzero electric field
indeed discharges, but smoothly and with a finite frequency
set by g.
The continuum Schwinger model admits an exactly

equivalent bosonized description, where the fermions ψ
and the electric field E in (1) are replaced by a single scalar
field ϕ satisfying the relations ∶ψ̄ψ∶ ¼ −cm cos ð2 ffiffiffi

π
p

ϕÞ,
jμ ¼ ∶ψ̄γμψ∶ ¼ π−1=2ϵμν∂νϕ, and F01 ¼ eπ−1=2ϕ (where
∶∶ denotes normal ordering) [2]. In the massless limit, the
bosonized Hamiltonian takes the form

HB ¼ 1

2

Z
dx

�
_π2 þ

�∂ϕ
∂x

�
2

þ g2

π
ðϕ − α=

ffiffiffi
π

p Þ2
�
: ð17Þ

With PBC and in the classical limit, α ≠ 0 and the initial
configuration ϕ ¼ _ϕ ¼ 0 would lead ϕ to oscillate sinus-
oidally in time and homogeneously in space, with period
2π

ffiffiffi
π

p
=g. On general grounds, the same should be true of

hϕi, with the initial state the α ¼ 0 ground state of the
Hamiltonian (where hϕi ¼ 0). In fact, since the bosonized
field theory is Gaussian, this initial state should evolve as a
coherent state: hϕi should oscillate sinusoidally in time,
with constant variance σ2ϕ ¼ hðϕ − hϕiÞ2i.
The electric field in the original fermionic description is

proportional to ϕ, and so the prediction is that hEðtÞi
should oscillate sinusoidally in time with period 2π

ffiffiffi
π

p
=g

and constant variance. In Fig. 2 we plot the results of

simulations in the massless regime that reproduce this
behavior, including the correct period. The oscillations
depicted in Fig. 2 can be thought of as a form of flux
unwinding [8]. The initial value of the electric field is
discharged by a current of positive charges flowing in one
direction around the circle and negative charges flowing in
the other. The difference with the physics described in
Fig. 1 is that many charged pairs are involved—the ground
state of the massless theory contains a large density of
charged pairs distributed homogeneously in space. By
contrast in the massive theory with large m=g the ground
state is close to the empty Fock space vacuum. In the
massless limit the gap between the first excited state and
the ground state can be computed analytically. Using the
bosonized description (17), one immediately obtains
ϵ1 − ϵ0 ¼ g=

ffiffiffi
π

p
. Our code accurately reproduces this

value, as well as the spectrum found in [17] for nonzero
values of m=g.

B. Time evolution of a charged pair
in a background field

We now proceed to investigate the dynamics of the
massive Schwinger model in the presence of an initial
background field and in the massive regime m=g ≫ 1. The
initial state we choose in these simulations is the ground
state of the theory with zero background field α ¼ 0, and
with a charged pair added according to (13). We then
evolve this state using the Hamiltonian with a nonzero
value of α, corresponding to turning on a background
electric field. In the case of OBC, the value of the field on
the boundaries is fixed to α. Semiclassically, when a pair is
present in the initial state, we expect the field to accelerate
the charges. In Fig. 3 we observe this behavior on a finite

FIG. 2. Expectation value of the spatially averaged electric field
hLi ¼ hEi=g in the massless limit, and its quantum standard
deviation (see (15), with periodic boundary conditions (PBC) and
parameters m=g ¼ 0, x ¼ 1=ðagÞ2 ¼ 200. The initial state is
described by (12) with α ¼ 3. From the bosonized description
(17) we expect the expectation value of the field to oscillate
sinusoidally with period Δt=a ¼ 2π

ffiffiffiffiffi
πx

p
and with constant

standard deviation. The vertical bars are separated by the analytic
prediction for the period Δt=a ¼ 2π

ffiffiffiffiffi
πx

p
.

FIG. 3. Expectation value of the charge density for OBC [see
(14)], with a pair inserted at t ¼ 0 at sites 1 and 12. Here we have
x ¼ 200, m=g ¼ 20 and α ¼ 3 which combined with the boun-
dary condition gives a relatively high probability of transmission.
The density has units of charge.
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lattice by plotting the charge density as a function of time
and lattice site. Multiple bounces can be clearly seen, where
the charges reflect off the boundary and primarily transmit
through each other. Because of the OBC, these multiple
transmissions never reduce the field by more than two units
(one for each charge).
In the case of PBC, as illustrated in Fig. 1, multiple units

of the initial flux can unwind due to a charged pair
traversing the circle multiple times [8]. Starting from a
background field of α, each pass of a charge around the
circle removes an additional unit of flux, and so the field
should decrease steadily in time until the background
electric field becomes −α. Conservation of energy dictates
the charges should come to rest at this point and there can
be no further decrease in the field (see Fig. 6). This will be
followed by a phase of “rewinding” where the process
occurs in reverse.
In the massive theory and in the regime of parameters we

can reach with our simulations, the transmission probability
is never extremely close to one. Hence after multiple
would-be transmissions the wave function will evolve into
a broad class of configurations. In some configurations the
field has unwound to the maximum extent possible due to
an unbroken chain of transmissions. In others, some
reflections have occurred (or possibly transitions to other
states), preventing the field from unwinding fully. In
contrast to the massless regime, this should lead to an
increase in the standard deviation of L for some time, and
the expectation value of the field will not decrease all the
way to minus its initial value (see Fig. 4).
Nevertheless, even in this fully quantum regime, certain

features provide a clear signal that unwinding is occurring.
One is the behavior of probability pðL; tÞ (derived from the
wave function) to measure an electric field value L at time t.
According to the semiclassical analysis of [8] in a regime
where transmission of two opposite charges through each
other is highly probable, the maximum possible unwinding
corresponds to L ¼ −α (because then the field L has
changed from α to −α).
The quantum mechanical probability pðL; tÞ should

behave in a way that corresponds to this semiclassical
physics. That is, for L in the range −α < L < α, pðL; tÞ
should increase monotonically with t until a certain time
when the unwinding has reached its apex, and decrease
with decreasing L for any fixed t during this time. For later
times, this behavior should (roughly) reverse. Furthermore
pðL; tÞ should be very small for L < −α and L > α for all
times, as these regimes are classically forbidden by con-
servation of energy. In Figs. 5 and 6 we plot pðL; tÞ, which
indeed agrees with these expectations.

C. Flux unwinding by Schwinger pair production

In this section we take the initial state to be the ground
state with α ¼ 0, and then time-evolve it using the
Hamiltonian (9) or (10) with α ≠ 0. In some parameter

regimes we expect Schwinger pair-production to occur.
Since pair production conserves energy, the mass-energy of
the charged pair 2m must be balanced by the change in
energy density due to the reduction in the background field
in between the charges. If Ei is the initial background field
and the charges are at rest and separated by a distance d,
conservation of energy requires

2m ¼ −
1

2

Z
ðE2

f − E2
i Þdy ¼ d

�
gEi −

g2

2

�
;

or in our notation L ¼ E=g, x ¼ 1=ðagÞ2,

d
a
¼ 2

ffiffiffi
x

p �
m
g

�
1

Li − 1=2
:

If d=a > N (where N is the number of lattice sites) there is
not enough room on the interval for a pair to be produced

FIG. 4. Plot showing the expectation value and standard
deviation of the spatially averaged electric field hEi=g [see
(15)] for OBC (cf. Fig. 3) and PBC (cf. Figs. 5 and 6). For
OBC, hEi=g oscillates with an initial amplitude of roughly 2g as
the charges bounce back and forth, while the standard deviation
of the field is roughly constant. The oscillations damp because the
transmission probability is less than one (see Fig. 3). For PBC,
the larger decrease in the expectation value of the electric field
shows that particles can traverse the circle multiple times,
unwinding the initial field by multiple units. The expectation
value does not decrease all the way to minus its initial value
because the transmission coefficient is not equal to one. For the
same reason the standard deviation of the electric field increases
as the wave function spreads out in configuration space, with
support on some configurations where the field decreases to the
maximum possible extent, and simultaneously on others
where the field stays closer to its initial value (cf. Fig. 6). At
t=a ≈ 150 the field has unwound to the maximum extent and
begins “rewinding” (as discussed in the text). Here x ¼ 200 and
m=g ¼ 20, and a charged pair is inserted in the initial state.
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(although with PBC the electric field can still decay with
time, but it will do so by tunneling homogeneously on the
circle, not by pair production).
To study the effects of Schwinger pair production we

consider x ¼ 50, hLni ¼ 6, m=g ¼ 2, and N ¼ 10. With

these values d=a ¼ 5.1 < N and we expect pair
production—followed by unwinding for PBC—to take
place. However in contrast to the previous section where
a massive charged pair was inserted by hand, the proba-
bility of unwinding will be substantially reduced because
the rate of pair production per time per length in the initial
state Γpp is exponentially suppressed. In the continuum
theory,

FIG. 5. The probability pðn; lÞ [see (16)] to measure an electric
field l ¼ En=g ¼ −3 at a specific lattice site n, as a function of
time and with initial field hEnðt ¼ 0Þi=g ≈ 3. The parameters are
the same as in Fig. 4 above.

FIG. 7. Simulations where the initial state is the zero-electric
field ground state, time-evolved with an applied background field
α ¼ 6. The parameters are x ¼ 50, m=g ¼ 2, and N ¼ 10. Top
pane: the expectation value and standard deviation in the spatially
averaged electric field for both PBC and OBC, as in Fig. 4
[see (15)]. One can see that unwinding is occurring by the
decrease in the expectation value and the increase in the standard
deviation. Middle pane: the number of pairs as a function of time
for PBC. The initial value is nonzero because for m=g ¼ 2 the
ground state does not coincide with the Fock space vacuum.
Nevertheless the increase shows that Schwinger pair production
is occurring. Bottom pane: the probability of measuring L ¼ −6
at a specific lattice site for PBC, similar to Fig. 5. As expected
from unwinding, the probability is essentially zero until enough
time has passed for a produced pair to propagate around the
circle. The probability is suppressed compared to Fig. 5, because
to reach L ¼ −6 a pair must first be produced and then traverse
the circle twice as many times.

FIG. 6. The square root of the probability
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pðn; lÞp

[see (16)]
to measure an electric field l ¼ En=g at a specific lattice site n,
as a function of time and l. The square root is taken for
ease of visualization. The parameters are identical to those of
Figs. 5 and 4; Fig. 5 corresponds to a horizontal slice of this
figure at E=g ¼ −3. One can see that the initial expectation
value of the field hEni=g ≈ 3.5 remains quite probable for all
times, but more and more negative values, down to roughly
En=g ¼ −3, attain non-negligible probability as time passes. At
later times this behavior approximately reverses as the field
rewinds. This is in accord with the analytic predictions of flux
unwinding.
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a2Γpp ∼
L
x
exp

�
−π

�
m
g

�
2 1

L − 1=2

�
≈ .01;

where the ≈ holds with the values listed above.
For OBC, even when d=a < N such that a pair can be

produced, the field cannot be reduced significantly because
the pairs simply bounce back and forth inside the interval.
Furthermore the lack of dissipation prevents charges from
accumulating near the boundaries. This together with the
low rate of pair production and the spatial homogeneity of
the quantum state results in nearly no change in the
expectation value or standard deviation of the spatially
averaged field. The results for both PBC and OBC are
plotted in Fig. 7.

V. CONCLUSION

We have performed a finite lattice simulation of the
dynamics of the massive Schwinger model. Starting from
the ground state of the finite lattice Hamiltonian with zero
electric field, we apply an electric field and observe its
behavior as a function of time. When the parameter m=g is
small, the field expectation value oscillates sinusoidally
with constant standard deviation as expected from the
bosonized description of the theory. We also considered the
effect of directly introducing charges to the initial state, and
observing their dynamics within an applied field. When
m=g is large, our results are consistent with the semi-
classical picture of a pair being accelerated by the field and
unwinding the background field. We verified that the

charges can transmit through each other with an Oð1Þ
probability, again consistent with the expectation from a
semiclassical analysis. Lastly, we verified that flux unwind-
ing can also occur due to Schwinger pair production.
In the future we plan to numerically investigate the

Schwinger model in an expanding, de Sitter background
spacetime. This will allow us to study the “hyperconduc-
tivity” phenomenon proposed in [21], as well as the
possibility of using the unwinding dynamics to drive
inflation [4].
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